COURSE AGENDA

Day One

- Introductions and Course Administration
- Chapter I Foundations
- Statistics Review
- Types of Variables
 - o Random Samples, Means, Variance, Standard Deviation
 - o Seatwork Problems on Statistics
 - o Random Sample, Population
 - o Sample Statistics, Population Statistics
 - Population Distributions
 - o Central Limit Theorem
 - Distribution of the Mean
 - o Variance as the Primary Criminal
- Relationship of Quality Programs
 - Statistical Process Control (SPC)
 - Comparison of SPC to DOE
 - o DOE Origins
 - o SPC Discussion
 - Statapult Introduction
 - SPC Rapid Fire Class Project Break up into teams of about 5 or 6
- Relationship of Quality Programs, Continued
 - o Discussion SPC Rapid Fire Class Project Results
 - o Six Sigma
 - o Lean
 - o Lean Six Sigma
 - o Quality Improvement Example
 - o DOE Examples
 - o DOE Class Project (Two Variable, Two Settings) Same Teams
- Relationship of Quality Programs, Continued
 - o Discussion of DOE Class Project (Two Variable, Two Settings) Results
 - o Load course software into your computer
 - o Analysis of Results
 - o Discussion and Comparison of Results
- Chapter I Homework: Please Read/Skim Chapter One (Foundations) and Chapter Two (Conducting Experimental Designs and Analysis) in Course Text

Day Two

- Chapter II Simple DOE Examples and Projects
 - o Review of Chapter I
 - o Why Use DOE?
 - Reduction in Variation
 - General DOE Outcomes
 - Advantages of DOE
 - Set the Conditions for Successful DOE
 - Input-Process-Output (IPO) Diagram
 - Process Flow Diagram
 - Fishbone / Ishikawa / Cause and Effect (CE) Diagram
 - o Team Seatwork: Diagram the Statapult Using IPO and CE
 - Chapter II Simple DOE Examples and Projects, Continued
 - Coding and Uncoding Data
 - Example DOE Calculations By Hand
 - o Example DOE Calculation By Computer
 - o Using Output Equations to Determine Input Settings
 - o Confirmation Runs
 - o Hypothesis Testing
 - Setting Acceptable Risk Value
 - o Confirmation Run Statistical Tests
 - o P-Value
- Chapter II Simple DOE Examples and Projects, Continued
 - o 3-Variable, 2-Level Example
 - Comparison with Tabular Presentation, Regression, Balanced Design
 - o KISS Guideline
 - Class Projects Same Teams
 - Class Project One: Two Variables, Two Levels (Use Computer)
 - Class Project Two: Three Variables, Two Levels (Use Computer)
 - Discussion, Presentation, and Comparison of Results
- Chapter II Homework: Please Read/Skim Chapter 3 (Design Types) and Chapter 5 (Analysis of Experimental Data) in Course Text
- Chapter III Fractional Factorial and Screening Designs
 - o Review of Chapter II
 - Example of Fractional Factorial DOE
 - Half-Fractional Factorial Design and Aliasing
 - Class Project One: 4 Runs, 3 Variable, Two Levels (Same Teams)
 - Discussion and Comparison

Day Three

- Chapter III Fractional Factorial and Screening Designs
 - o Seatwork: Full Factorial, 2-Factor, 2-Level and More Complex Designs
 - o Discussion of "Defining Word" and "Defining Relation"
 - o Resolution
 - Foldover Designs and Blocking Variables
 - Screening Design Example
 - o Class Project Two: Screening Design (Sam Teams)
 - Suggested Reading for Chapter III: Chapter 3 (Design Types) in Course Text
- Chapter IV Finding Interactions
 - o Review if Chapter III
 - o Robust Designs
 - o Screening Designs
 - Types of Designs
 - Examples: Interactions/No Interactions
 - Graphical Analysis Techniques (Two and Three Dimensions)
 - Class Project One (Same Teams)
- Chapter V Finding Quadratic Effects
 - o Review of Chapter IV
 - Experiments to Locate Quadratic Effects
 - o Three-Level Designs
 - o Full Factorial Designs to Locate Quadratics
 - o D-Optimal Designs
 - Fractional and Latin Square Designs
 - o Box-Behnken Designs
 - o Box-Wilson/Central Composite Design
- Final and Conclusion
 - Review of Topics Covered and Objectives
 - Reminder of Course Feedback Form
 - Restate Contact Info for Instructor
 - o Final Class Project / Challenge (Same Teams)
 - Complete 3-Factor, 2-Level, 4 Replication Design
 - Challenge: Hit the Target/Quarter/Cup on 4 Out of 5 Attempts